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Data Challenges in High Energy Physics:
Genomics Large Hadron Collider exemplar

Data Volume increase: *© ATLAS and CMS detectors

. generate analog data at rates
to 10 PBin FY21 equivalent to 1PB/second

« Output rate after data reduction is

High Energy Physics 1GB/second ~ 10PB/year

(Large Hadron Collider © Storage of cumulative derived
data, simulated data, replicated
15 PB of data/year data is currently ~ 100PB, and is
rapidly increasing _—
Light Sources *  Workflow: homogeneous -b i
community of physicists access -
Approximatew 3007TB read-only shared data using the ) __/'
day Data Challenges in Large-Scale Simulations:
: S3D Combustion code exemplar
5 Climate » Goal: simulate turbulence-chemistry
Data expected to be interaction at conditions that are
representative of realistic systems
w I hundreds Of 100 EB . pH|gh pressure y

Turbulence intensity

Source: Bill Harrod, SC12 - Tuuertiergh s

Sufficient chemical fidelity to differentiate

plenary presentation effects of fuels

» Exascale simulation will require 3PB
of memory, and will generate 400PB
of raw data (1PB every 30 minutes)

» Workflow challenges include co-

3 design for simulation and in-situ
analyses




Big Data ...
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Wikipedia says; ““Big data is a collection of data sets so
large and complex that it becomes difficult to process
using on-hand database management tools or traditional
data processing applications.” ©

How should we think about big data?



Knowledge Discovery Life-Cycle: Transactional to
Relationships — Current to Historical

Instruments, sensors

supercomputers

Trigger/
questions



“Data intensive” vs “Data Driven”

Depends on the C(I)qﬁzrqhons are driven and defined by
perspective BIG analytics
P Top-down query (well-defined operations)
rocle.sso.r, memaory, 0 Boﬁﬁ;n up discovery (unpredictable time-to-
application, storages resu
. ., BIG data processing
An CIppIICCITlon can be Predictive modeling
data intensive without Usage model further differentiates these
. . Single App, users
gneces.solrlly) belng I/O Large number, sharing, historical /temporal
Infensive

Very few large-scale applications of practical importance are NOT Data Intensive



Understanding Climate Change

CO2 levels hit new peak at key -CN\l
observatory CN\l US

NOAA Satellite and Information Service \,\/v National Climatic -
Data Center

Q National Environmental Satellite, Data, and Information Service (NESDIS) 1.5. Department of Commerce 3
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Understanding Climate Change — Physics-Based Approach

General Circulation Models: Mathematical models
with physical equations based on fluid dynamics

Parameterization and non-linearity
of differential equations are sources for uncertainty!

CCSM CAM3__



Understanding Climate Change - Physics Based Approach

g Jan 01 Hour 00

CCSM CAM3_ _

General Circulation Models: Mathematical
models with physical equations based on
fluid dynamics

Figure Courtesy: NCAR
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Understanding Climate Change - Physics
Based Approach

Temperature Increases for Various Emission Scenarios

High emissions scenario

.
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Physics based models are essential but
insufficient

Disagreement between IPCC models

- Relatively reliable predictions at global scale for ancillary
variables such as temperature

- Least reliable predictions for variables that are crucial for
impact assessment such as regional precipitation

“The sad truth of climate science is that the
most crucial information is the least reliable”
(Nature, 2010)

Physics based models

Temperature Hurricanes
Pressure Extremes

Large-scale wind Precipitation



Data-Driven Knowledge Discovery in
Climate Science

Transformation from Data-Poor to Data-Rich

Sensor Observations

Reanalysis Data

Model Simulations

Surface Temperature [*C]
01JAN2011

A new and transformative data-driven approach that:

Makes use of wealth of observational and simulation data

Advances understanding of climate processes

Informs climate change impacts and adaptation

“Climate change research is now ‘big science,’

comparable in its magnitude, complexity, and societal

importance to human genomics and bioinformatics.”
(Nature Climate Change, Oct 2012)



Need for data driven discovery

Physics based models

Temperature Hurricanes Fires
Pressure Extremes Malaria outbreaks
Large-scale wind Precipitation Landslides

Global sea surface temperatures Atlantic hurricanes Global fires

Sea Surface Temperature Anomaly [°C]
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Data Mining, Analytics and Actionable Insights?




A Poem

e
The Unknown

As we know,
There are known knowns.
There are things we know we know.

Conventional Wisdom * High Humidity results in outbreak of Meningitis
 Customers switch carriers when contract is over

* Nuclear Reaction happens under these conditions
Validate Hypothesis * Did combustion occur at the expected parameter values
* | think this location contains a black hole

© Alok Choudhary  Northwestern University



The Unknown

- 4 We also know I

There are known unknowns.
That is to say
We know there are some things
We do not know.

* Will this hurricane strike the Atlantic coast?

* What is the likelihood of this patient to develop
cancer

Top-Down Discovery - We

know the question to ask

* Will this customer buy a new smart phone?

© Alok Choudhary  Northwestern University



The Unknown

But there are also unknown unknowns,
The ones we don't know
We don't know.

* Wow! | found a new galaxy?

Bottom up Discovery - We « Switch C fails when switch A fails followed by switch
don’t know the question to B failing
ask * On Thursday people buy beer and diaper together.
* The ratio K/P > X is an indicator of onset of
diabetes.

© Alok Choudhary  Northwestern University



End-to-End: From Transactional analytics to
relationship mining

Climate Data o
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CMIP3 = CMIP5 => Climate BIG DATA : 10s of TBs to 10s of PBs



Relationship mining: Seasonal hurricane
activity

Contrast-based network mining for

discriminatory signatures {227 /22/ /#v

Novel dynamic graph clustering for
dense directed graphs

High activity _ Low activity

Statistically robust methodology for
automatic inference of modulating
networks

Hurricane

Improved forecast skill for seasonal % (G vind S e—
1 /1 % ;Anom JFHC Indo-Pacifi
hurricane activity W arrica st Anomaly )
gRH Anomaly
Discovered key factors and mechanisms e
modulating NA hurricane variability AMO: Atiante eriional Oscilation

Dlscov_ered novel cllmate.: mde.x with Sencan et al. LICAI (2011)
much improved correlation with NA  Pendse et al. SIAM SDM (2012)

hurricane varlablllty 0.69 vs 0.49 Chen et al. Data Mining & Knowledge Discovery (2012)
S ' Chen et al. SIAM SDM (2013)
Chen et al. IJCAI (2013)

Semazzi et al. in review at journal (2013)



Challenges in data driven analysis

5 71 Complex dependence
Non-IID

Spatio-temporal correlation

Long memory in time

Surface Temperature [*C]
01JANZ2011

Long range dependence in space
Nonlinear relationships
1 Data characteristics

Heterogeneous, Multivariate

Heavy Tailed Distributions

120E

Noisy, incl. low frequency variability
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Paucity of training data

1 Complex processes
Evolutionary

Multi-scale in space and time
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From Science to Social

Activity/interaction
based Network
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Top Associations by Fans For
Bing, Google & Yahoo on FB

Windows Phone
users

5.30% of

Google
0.98% of George Chrome users
Foreman Cooking

2.58% of
Microsoft users

2.48% of
TechCrunch

0.99% of 1.44% of Dentyne
Chillclock users Users

3.83% of
Logitech users

2.53% of
Adobe Flash
Users

2.49% of
Microsoft users

2.58% of Crest

1% of Chex Mix Uk

users
2.49% of
Internet
Explorer users

2.15% of Chex 2.425% of Pepto-
Mix users Bismol users

2.20% of TridentA
Chewing Gum
users

2.37% of Dentyne
users

2.32% of Yahoo!
Sports users

All data for 16-34 age group only




Affinity
Mapping




DISCOVER CONNECTIONS

* Track engagement patterns
* Unlimited mapping

* Surprises will ensue




A different way of thinking: Extreme Computing
+ Big data analytics => Accelerating Discovery

MATERIAL SCIENCE: A
“DATA DRIVEN

DISCOVERY” WORTH
A THOUSAND
SIMULATIONS? o



Discovery of stable compounds

\ | \
Datasetsof | '\ Materials

materials .
, discovery!
properties




Structure-Property Optimization - Try
optimization for 103 dimensions

Microstructure
Representation

®

Traditional Method

(Features that
mathematically or
statistically describe
microstructures

Global
Optimization

>,

=

|

Database
Construction
(Randomly generated

and most undesired
objectives

microstructure-property
pairs with most desired

=)
S

>

©

4

Feature
Selection

W

Find the value of
microstructure that
leads 1o the extremal

properties

\

i

Select a small set of

features

.

“critical” microstructure

Data Mining Method



Accelerating Time to Insights

Optimum Solution {(E-06)
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Extreme Computing + Big data : Not a
single dimensional challenge




The Growth of Complexity = Need for Simplicity

1 Higher spatial or temporal resolution
extremes analysis
Network-based prediction

Estimation of spatiotemporal dependence

= Higher data dimensionality
_ Significant correlations for hurricane prediction
Bayesian analysis of multi-model ensembles

¢ (Sencan, Chen, Hendrix, Pansombut, Semazzi, Choudhary,
Kumar, Melechko, and Samatova, 2011)

Sampling-based statistical methods

Multivariate quantile analysis

1 Greater complexity per data point

Estimation of complex dependence

structures

Handling non-stationarity

Multi-resolution analysis

Prediction of land climate using ocean
climate variables

71 Shorter response time

Interactive hypo’rhesis ’resfing (Chatterjee, Steinhaeuser, Banerjee,
Chatterjee, and Ganguly, 2012)



Right Computing infrastructure? What characteristics do
typical analytics functions have?

Benchmark of Applications
Parameter! SPECINT SPECFP MediaBench TPC-H MinsBsneh
Data References 0.81 0.55 0.56 0.48 1.10
Bus Accesses 0.030 0.034 0.002 0.010 0.037
Instruction Decodes 117 1.02 1.28 1.08 0.7
Resource Related Stalls 0.66 1.04 0.14 0.69 D43
CPI 143 1.66 1.16 1.36 1.34
ALU Instructions 0.25 0.29 0.27 0.30 0.31
L1 Misses 0.023 0.008 0.010 0.029 0.918
L2 Misses 0.003 0.003 0.0004 0.002 0.006
Branches 0.13 0.03 0.16 0.1 v.4
Branch Mispredictions 0.009 0.0008 0.016 0.0006 0.00%

T The numbers shown here for the parameters are values per instruction



Data Analytics/Mining applications: Do
they have different characteristics?

" SPEC INT SPEC FP MediaBench | TPC-H NU-MineBench
10 @
9 N
S
g .
€ 7 (o0 = B m T m
> 6 {i—EaEEn—{nEn—u !
S 5 |
(]
3 a 0
-
o 3
2 0y Y Yy By
1 =
0 O‘N‘Q_‘H—'q_'x‘hvhy-— “ywvm'm‘-c' ‘GJ o‘ovmywvwvyvm'“ I\mq-Qo:C.C-HQ.QU)).C%Q.-HQ
SeRNes8egEsSR02Erssaoowswadoo0SS S8 ogsNSsEs2¢
NWESE>2E5gOo0wWSISS5gQ80gyk SO 585823580 ¢g
o -Hg g g_EEEU)Q_S 26‘9-0 -8 mg mzhgm c 3
3] ; (;U c €2 & g ~w Ho

Clear Implications on architecture, modes, memory hierarchy and other components
|dentify similarities and design for co-existence



Big Data: Generalization and Optimizations

o - __________________________________ |

Analytical
complexity

most data is
structured

Data
volume

Analytic
RDBMSs

coexistence .
most data is

unstructured

Generalized Non-

relational
RDBMSs systems

Data
variety



Data =2 Information =2 Insights = Actions

Operational
data &,

Historical
data

Business & A *

web content zﬂ

Web @
services  _

-

Event analytics
Text analytics

Data integration
& management

Data

warehouse
In-database

Data processing

NENS

Portal Scorecards
Mashups Dashboards
Gadgets Reports

Operational, tactical &
strategic analytics

In-memory
processing




Create a suite of Mini - Analytics Apps?

Top 3 Kernels

Analytics Algorithms
Kernel 1 (%) Kernel 2 (%) Kernel 3 (%)

K-means

Fuzzy K-means
BIRCH

HOP

Naive Bayesian
ScalParC
Apriori

Eclat

SVMIight

Distance (68)
Center (58)
Distance (54)
Density (39)
probCal (49)
Classify (37)
Subset (58)
Intersect (39)

quotMatrix (57)

Center (21)
Distance (39)
Variance (22)
Search (30)
Variance (38)
giniCalc (36)
dataRead (14)
addClass (23)

quadGrad (38)

minDist (10)
fuzzySum (1)
Redist (10)
Gather (23)
dataRead (10)
Compare (24)
Increment (8)
invertC (10)

quotUpdate (2)



Coupled Model Inter comparison Project

ensembles:

Temporal resolution: 6 hours — 3 qﬁ‘i\? o AMP&20C
Models: 24 - 37

Simulation experiments: 10s -
Control runs & hindcast

1%/yr CO, (140 yrs)
abrupt 4XCO, (150 yrs)
fixed SST with 1x &

Decadal & centennial-scale
forecasts

Covers 1000s of simulation year
100+ variables
10s of TBs to 10s of PBs

Summary of CMIP5 model
experiments, grouped into three tiers



An instrument and a discovery engine

Millions of cores

Each core is like a sensor

Each core generates data based on a model




Data Analytics Algorithms — Broad Impact =>
Accelerating Discoveries

lllustrative Applications Feature, data reduction, or Data analysis kernels

analytics task

Chemistry, Climate, Combustion, Clustering k-means, fuzzy k-means, BIRCH, MAFIA, DBSCAN, HOP, SNN,
Cosmology, Fusion, Materials science, Plasma Dynamic Time Warping, Random Walk

Biology, Climate, Combustion, Statistics Extrema, mean, quantiles, standard deviation, copulas, value-
Cosmology, Plasma, Renewable energy based extraction, sampling

Biology, Climate, Fusion, Plasma Feature selection Data slicing, LVF, SFG, SBG, ABB, RELIEF

Chemistry, Materials science, Data transformations Fourier transform, wavelet transform, PCA/SVD/EOF analysis,
Plasma, Climate multidimensional scaling, differentiation, integration
Combustion, Earth science Topology Morse-Smale complexes, Reeb graphs, level set decomposition
Earth science Geometry Fractal dimension, curvature, torsion

Biology, Climate, Cosmology, Fusion Classification ScalParC, decision trees, Naive Bayes, SVMlight, RIPPER
Chemistry, Climate, Combustion, Data compression PPM, LZW, JPEG, wavelet compression, PCA, Fixed-point
Cosmology, Fusion, Plasma representation

Climate Anomaly detection Entropy, LOF, GBAD

Climate, Earth science Similarity / distance Cosine similarity, correlation (TAPER), mutual information, Student's

t-test, Eulerian distance, Mahalanobis distance, Jaccard
coefficient, Tanimoto coefficient, shortest paths

Cosmology Halos and sub-halos SUBFIND, AHF
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